Abstract
We present full spectral scans from 200 um - 670 um of 27 Class 0/I protostellar sources, obtained with Herschel-SPIRE, as part of the "COPS-SPIRE" Open Time program, complementary to the DIGIT and WISH Key programs. Only 16 of 27 protostars have the same Class classification with Tbol and Lbol/Lsubmm. We found that the spectral index at 500 um evolves with Lbol/Lsubmm, suggesting that it may be sensitive to the evolution during the Class 0 phase by probing the envelope. We identify rotational transitions of CO lines from J = 4-3 to J = 13-12, along with a number of lines of 13CO, HCO+, H2O, and [C I] lines. The ratios of 12CO to 13CO suggest that 12CO emission remains optically thick until J_up > 17. We fit up to four components of temperature from the rotational diagram with flexible break points which separate the components. The distribution of rotational temperature shows a primary population around 100 K with a secondary population at 400 K. We quantify the correlations of each line pair found in our dataset, and find the strength of correlation of CO lines decreases as the difference of J-level between two CO lines increases. The multiple origins of CO emission previously revealed by velocity-resolved pro files is consistent with this smooth distribution, if each origin contributes to a wide range of CO lines with significant overlap in the CO ladder.The spatial extent of the CO emission is investigated by projecting the flux ratio from the outer spatial pixel (spaxel) to the central spaxel as a function of azimuthal angle, which allows us to identify the bipolarity of the morphology. We find that the morphology of CO emission is more centralized and less bipolar at higher J lines. The difference of the maximum and minimum ratios in the projected pro file (peak-to-valley difference) quantifies the bipolarity of the identified bipolar feature. We found the peak-to-valley difference declines as the J-level increases, suggesting that the bipolar feature is less dominant at higher J-level.